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Abstract
Type 1 diabetes mellitus (T1DM) is caused by a selective autoimmune-mediated destruc-
tion of insulin-producing β-cells. Exogenous insulin delivery continues to be the only stan-
dard treatment method. Even though some patients accurately comply with their pre-
scribed course of medication, transient episodes of hyperglycemia and hypoglycemia
cannot be entirely avoided by this symptomatic treatment. Nowadays, with a better under-
standing of disease development and stratification, more personalized therapeutic ap-
proaches are emerging for T1DM. In this review, the highlights of some of the potential
cell-based therapies for T1DM are summarized. Specifically, the focus is on islet trans-
plantation approaches, the generation of insulin-producing cells from stem cells, trans-
differentiation of other cell types into β-cells, discussing the role of mutagens either in
preserving the β-cell mass or inducing the β-cell proliferation and a tissue engineering ap-
proach. Even though stem cell differentiated β-cells are promising, there are considerable
obstacles that must be overcome before the dream of personalized T1DM therapy be-
comes a reality.

Introduction
Diabetes mellitus (DM) is rising to an alarming epidemic level with morbidity and
mortality due to its microvascular and microvascular complications. The increase
in the prevalence of DM in most regions across the globe has been parallel to the
rapid economic development due to urbanization and the adoption of modern
lifestyles. Diabetes mellitus is a group of chronic metabolic disorders character-
ized by hyperglycemia and impaired glucose tolerance. Hyperglycaemia or in-
creased blood glucose level is caused by abnormalities either in insulin secretion,
insulin action, or both that affect carbohydrate, fat, and protein metabolic dys-
function causing multiple organ failure. The pathogenesis of DM is either due to
the autoimmune-mediated destruction of insulin-producing pancreatic beta cells
or defects in the insulin action pathway that result in hyperglycemia [1,2]. Accord-
ing to the international diabetes federation (IDF) 2022 atlas, globally around 537
million adults aged between 19-72 years are living with diabetes mellitus and it is
projected to rise to 643 million by 2030 and 783 million by 2045. An estimated
240 million adults are living with undiagnosed DM and 90% of undiagnosed dia-
betes patients are in middle and low-income countries. IDF confirms that diabetes
mellitus is one of the fastest-growing health emergencies of the current century
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with a mortality of approximately 6.1 million in 2021. In India, approximately 73
million adults have diabetes and the number of undiagnosed patients is even
higher. India has the highest number of type 1 diabetic patients under the age of
19. This increased number of diabetic patients causes a huge economic burden on
healthcare costs [3].

Since DM is characterized by complex pathophysiology and diverse presenta-
tion, any classification of this disorder is therefore arbitrary, yet useful, and fre-
quently impacted by the physiological parameters present at the time of assess-
ment and diagnosis. The classification now in use is based on the pathogenesis
and etiology of the disease and is helpful in determining the necessary therapy
and clinical assessment of the disease. It is mainly categorized into Type 1 diabetes
mellitus (T1DM), Type 2 diabetes mellitus (T2DM), gestational diabetes mellitus
(GDM), and diabetes-induced or related with particular specific illnesses, pa-
thologies, and/or syndromes [4]. T1DM, often referred to as insulin-dependent
diabetes mellitus (IDDM), or juvenile-onset diabetes, accounts for around 5–10%
of all diabetes cases. It is an autoimmune condition defined by the T-cell-medi-
ated apoptosis of pancreatic beta-cells, which causes an insulin deficit and ulti-
mately leads to hyperglycemia [5].

The major treatment for T1DM is intense insulin therapy administered by in-
jection or an insulin pump. The primary therapeutic goal is to maintain tight
glycaemic control to reduce the long-term micro and macrovascular conse-
quences. Although these approaches are effective, the normalized level of HbA1c is
rarely accomplished without the constant risk of hyperglycemia. The majority of
T1DM transplant therapies have hence focused on islet cell or solid organ trans-
plantation. Islet cell transplantation can be allogenic or autologous, and whole
pancreas transplantation usually takes place either alone or together with a kid-
ney. Cell-based therapy for type 1 diabetes now has more options due to the recent
advancements in the area of autoimmune disorders and stem cell biology [6]. In
this review, we examine the current cell-based treatment for type 1 diabetes.

Islet Transplantation
Transplantation of pancreatic islets is considered as a therapeutic option for the
treatment of T1DM. The islet transplantation has successfully achieved exogenous
insulin independence for several years for T1D patients. Despite its efficacy, during
the 1980s, the following three severe obstacles prevented the implementation of
islet transplantation as a treatment for diabetes in humans, 1) lack of an effective
nontoxic immunosuppressive regimen capable of preventing alloimmune and au-
toimmune damage to the islet graft, 2) lack of a donor source of human pancreas,
and 3) inability to reliably extract a sufficient number of viable islets from human
pancreas. Only half or fewer of the roughly one million islets in an adult human
pancreas are consistently successfully isolated. As a result, to provide enough iso-
lated islets to achieve insulin independence, clinical islet transplantation fre-
quently needs the donation of two or more donor pancreas [7-9].

New attempts at clinical islet transplantation for diabetes were made in the
late 1980s and 1990s as a result of significant advancements in the field of islet
isolation including the development of the collagenase perfusion followed by di-
gestion in Ricordi chamber, dithizone staining, improvements in viability testing,
etc. There had been 270 islet transplants for people with type 1 diabetes as of De-
cember 31, 1995, with a 10% overall insulin independence rate. Fourteen of the 270
patients with insulin dependence who got islet transplants achieved insulin inde-
pendence for at least a year. In 2000 Shapiro et al. reported a series of seven T1D
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patients who were insulin-independent following islet transplantation. The ste-
roid-free immunosuppressive treatment employed in these patients is known as
the “Edmonton protocol”. It included daclizumab (an IL-2 receptor antagonist),
sirolimus, and low-dose tacrolimus. The use of numerous donors (up to three do-
nors) to give significant islet mass and the steroid-free immunosuppressive regi-
men appeared to be related to the success of this protocol [10-12].

As a result of the Edmonton group’s success, islet transplant programs have
stepped up their efforts, and new islet transplant facilities have been established.
Thirty-six people with T1D underwent islet transplantation using the Edmonton
procedure as part of an international multicenter trial. Among that, 21 people
(58%) achieved insulin independence at some time, and 5 of them did so after two
years. The outcomes confirmed that the Edmonton procedure constituted a sig-
nificant advancement in the area of islet transplantation, although it was evident
that there were still certain obstacles that needed to be overcome. The majority of
recipients’ islet function decreased or was lost over time, insulin independence
was not always reached, and infusion of an islet mass bigger than predicted was
necessary [13]. According to the Collaborative Islet Transplant Registry (CITR),
2007 to 2010 is known as the “new era” in islet transplantation [14]. The good
news is that there has been a constant increase in islet transplantation due to the
organized activity of several islet transplantation centers and networks world-
wide like nPOD, HIRIN, IPITA,etc. [15].

The quick establishment of blood flow for nutrient delivery, oxygen supply,
and immune regulation is a crucial factor in improving islet graft survival after
transplantation. Due to an immediate blood-mediated inflammatory reaction
(IBMIR) and an initial immunological response, it is estimated that 50% of the is-
let loss occurs in first few days of transplantation. Currently, the liver is the loca-
tion of choice for islet transplantation since it requires minimal invasiveness, easy
to access, and has a low risk of bleeding and thrombosis. Through portal circula-
tion, the liver can also oxygenate the transplanted islets until revascularization
[16]. Apart from the liver, researchers are now focused on the establishment of
new transplantation sites for better revascularization and graft survival like an
omental pouch, intramuscular, spleen, subcutaneous space, etc. [17].

Generation of Beta Cells from Stem Cells
Since the demand for endocrine replacement therapy for T1D patients has in-
creased, there has been a lot of interest in the differentiation of stem cells into
pancreatic islets or insulin-producing beta cells. Studies examining the mecha-
nisms of islet development have influenced efforts to differentiate either of pluri-
potent stem cells, embryonic stem (ES) cells, induced pluripotent stem (iPS) cells,
and adult stem cells into insulin-producing beta cells. To achieve progressive dif-
ferentiation of the cells through specific developmental pathways, considerable
work was undertaken to optimize the culture conditions, specifically the concen-
trations of medium components and timing of the activation or inhibition of im-
portant signaling pathways. The obtained insulin-producing cells should express
certain biological markers of normal β-cells that confirm a terminal differentia-
tion status, such as MAFA (a basic leucine zipper transcription factor expressed in
mature beta cells but absent in other pancreatic cell types), NEUROD1 (a down-
stream factor of NGN3 expressed in most pancreatic endocrine cells, including β-
cells), PDX1/NKX 6.1 (restricted co-expression in beta cells). The differentiated
cells should also secrete insulin when challenged with low and high concentra-
tions of insulin and C-peptide [18-21].
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Embryonic Stem Cells
The most remarkable feature of embryonic stem cells (ESCs) is their ability to
differentiate into every type of adult cell. Human ESCs were differentiated into
definitive endoderm, gut-tube endoderm, pancreatic, and eventually islet cells
using a stepwise method in which culture conditions were combined with the
gradual addition of growth and differentiation agents [22,23]. TGF-family mol-
ecules, retinoic acid, and fibroblast growth factors (FGFs), which play important
roles in directed differentiation, are used in identical amounts in protocols from
various labs. The expression of stage-specific transcription factors serves to
identify and validate each step, and the functionality of β-cell activity is evaluated
by insulin synthesis and secretion in response to glucose. In order to reduce the
culture time and increase the effectiveness of β-cell differentiation, various
modifications have been made to the stepwise protocol. The differentiated beta
cells’ inadequate maturity is a significant limiting factor in stem cell differentia-
tion [24,25]. Even though the molecular mechanisms underlying the functional
development are still being studied, the differences between immature and
mature β-cells have been identified by comparing fetal and adult islets, while
mature cells have more insulin secretory granules and are more active at metabo-
lizing glucose than immature cells. Upon maturation, β-cells also express MafA,
Ucn3, and Err in addition to the β-cell markers Pdx1, Nkx6.1, and Isl1 [26,27]. Nair
et al., obtained about 90% efficiency of β-cells by using cell cluster dissociation,
sorting, and reaggregation processes [28]. In order to effectively differentiate ESCs
into beta-cells for islet cell replacement treatment, differentiation techniques
have been modified to mimic the signals the cells experience in vivo. Although
there has been significant advancement in these scientific areas, there are still
moral concerns about the harvesting of human embryos [29].

Induced-pluripotent stem cells
The generation of induced pluripotent stem cells (iPSCs) from adult cells provides
a renewable source of pluripotent cells. Adult somatic cells can develop ESC-like
properties by being treated with Yamanaka factors like OCT4, KLF4, SOX2, and
MYC in ESC-like culture conditions. iPSCs can develop into cells from all three
lineages and share similar morphological and transcriptomic properties as ESCs
[30,31]. As a result, these cells carry the same risk of teratoma development as
ESCs, but the use of iPSCs avoids ethical dilemmas because no embryos are
destroyed. Similar methods to those developed for ESC differentiation can be used
to differentiate iPSCs into beta-cells. However, a few studies have also asserted
that iPSCs’ varying epigenetic profiles and genetic instability have an impact on
the requirements and effectiveness of their differentiation [32]. By modulating the
cytoskeleton, Hogrebe et al., improved the efficiency of β-cell differentiation using
hiPSCs and hESCs. They used Latrunculin A to depolymerize the actin network in
order to specify the endocrine system because they reasoned that actin polymer-
ization affected the specification of the endodermal lineage. In order to facilitate
the development of β-cells that demonstrated GSIS that was comparable to that of
human islets, they were able to maintain blood glucose levels in diabetic mice.
The ability of stem cells to differentiate into beta-cells has improved, although
compared to native pancreatic islets in terms of responsiveness to glucose and
expression of beta-cell-specific genes is less in stem cell-derived beta cells [33].

Adult stem cells
Due to their lack of ethical issues and limitless supply, adult stem cells are the
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most crucial source for cell therapy of numerous disease models. Various studies
have shown that stem/progenitor cells found in bone marrow [34], adipose tissue,
[21,35] liver [36], gut [37], salivary glands [38], neural tissues [39], dental pulp
tissue [40], placenta [41], amnion [42], and umbilical cord [43] can be used to
generate insulin-producing cells. The pancreas is a source of stem cells like duct
cells, acinar cells, and stem cells with the ability to differentiate and be repro-
grammed to ensure the development of insulin-producing cells. In earlier studies,
human pancreatic duct cells have been shown to multiply in vitro and develop
into insulin-producing cells. In addition, it was discovered that after partial
pancreatectomy in diabetic mice, ductal progenitors might develop into mature
ductal epithelial cells [43]. These findings indicate the existence of stem/progeni-
tor cells in the pancreas, which may provide a prospective source of new islets.

Multi-potent mesenchymal stem cells (MSCs) are found in adult tissues and
are distinguished by their capacity to self-renew and differentiate into several
lineages. MSCs can be extracted from bone marrow, umbilical cord, and adipose
tissue. MSCs can be expanded in vitro and, like iPSCs have the benefit of reducing
the chance of immunological rejection. Additionally, MSCs generate numerous
growth factors that aid the growth and survival of neighboring cells and have a
low tendency to develop teratomas. Through the inhibition of IFN-γ and TNF-α
and the upregulation of IL-10, they have been proven to have immunomodulatory
effects also. Through the production and secretion of VEGF, HGF, IL-6, and TGF-1,
MSCs also show pro-angiogenic properties [45,46]. The most studied sources of
MSCs are adipose tissue and bone marrow. Extracting a sample from the bone
marrow requires an intrusive, painful process, and liposuction aspiration is a
common practice that enables collection of   sufficient adipose tissue. The total
amount of human marrow collected while under local anesthesia is no more than
40 ml. A harvest from adipose tissue, on the other hand, requires only 200 ccs of
local anesthesia. Approximately 5000 adipose tissue mesenchymal stem cells can
be obtained from 1 ml of adipose tissue aspirate. About 600–1000 bone marrow
mesenchymal stem cells are produced from the same volume of bone marrow
aspirate (BM-MSCs) [47]. These findings show that adipose tissue is a superior
source of MSCs to other sources. It has been reported that human ADSCs can
differentiate into insulin-producing cells in vitro under specific medium condi-
tions and that these cells express pancreatic developmental genes like Isl-1, Ipf-1,
and Ngn-3 as well as the islet hormone genes glucagon and somatostatin. In a
recent study, human adipose-derived MSCs were differentiated into insulin-
producing cells using growth factors like activin, FGF, and EGF.  When implanted,
the patients’ insulin requirements dropped by 30% to 50%, and their serum C-
peptide levels increased by 4 to 26 fold, indicating that differentiated ADSC
transplantation may be a useful therapeutic approach for the management of
diabetes [48-53].

Beta Cell Proliferation
During pancreas development, β-cell expansion occurs through proliferation
upon differentiating from progenitors. In the fetal and neonatal pancreas, beta
cell proliferation is important to increase cell mass, but it rapidly reduces in early
adolescence and is almost limited in adulthood and this decreased proliferative
capacity is inversely correlated to their functional maturation [54]. However, it is
now widely accepted that in situations with high metabolic demand, such as
pregnancy, obesity, or injury, adult beta cell mass may be increased by prolifera-
tion rather than by neogenesis [55]. Therefore, the expansion of existing beta cells
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by inducing proliferation is considered to be a potential approach to rectorate lost
beta cell volume in diabetic patients. Development of new β-cells occurs in the
postnatal period, supporting the theory that signaling molecules abundant either
in the intrauterine environment or circulating in young individuals could promote
their expansion. In this regard, significant biochemical mechanisms have previ-
ously been identified that control the proliferation of β cells in both the early and
late phases of life [56].

A network of highly coordinated cell cycle regulators control the beta cell repli-
cation and the proliferation can be induced by both intrinsic and extrinsic factors.
Intrinsic factors include glucose, amino acids, insulin-like growth factors (IGF),
prolactin (PRL), placental lactogen (PL), glucagon-like peptide-1 (GLP-1), growth
hormone, hepatocyte growth factor (HGF), epidermal growth factors (EGF),
transforming growth factor (TGF), and extracellular matrix (ECM) [57-60]. Intrin-
sic factors, are cyclins, cyclin-dependent kinases, and cyclin-dependent kinase in-
hibitors, etc [61,62]. Transforming growth factor-beta (TGF-beta), the cytokine
interleukin 1-beta (IL1-beta), pancreastatin, and the diazepam binding inhibitor
are all known to decrease the proliferation of beta cells in fetal rodents [63,64].
The ability of β-cells to multiply at various periods of life is correlated with the ex-
pression of these regulators. The majority of adult beta cells are in the quiescent
(G0) phase of the cell cycle [65]. In response to the mitogenic signals, they enter
the G1, S, G2, and M stages of the cell cycle to begin replication and these events
are controlled by cyclins and cyclin dependant kinases (CDKs). Cyclin D1 and D2
have been given a key function in the positive control of beta-cell proliferation.
These cyclins bind to CDK4 and in turn initiate cell cycle progression through
their kinase activity. Human beta cell replication appears to be heavily reliant on
the CDK4-cyclin D1 complex [66-68]. The presence of a mitogen during the G0/G1
transition, initiates a cascade of events, among them being the strong expression
of cyclin D1. Along with CDK4/6 and cyclin D known as the initiator complex
translocates to the nucleus and hyperphosphorylate retinoblastoma protein(Rb)
which is a key regulator of β-cell proliferation. Rb inhibits transcription factors of
the E2F family when it is hypophosphorylated, limiting the cell cycle’s progres-
sion. In its hyperphosphorylated form, E2F is released which improves the pro-
duction of genes necessary for cell cycle progression, including “later” cell cycle-
promoting molecules such as cyclins E and A. Then, cyclin E-CDK2, cyclin A-CDK1,
and cyclin B-CDK1 complexes come together and, in turn, promote progression
into the S, G2, and M phases, respectively. Cell cycle inhibitors, which predomi-
nate cell cycle activators in human beta cells regulate the progression through the
cell cycle events [69-72].

Over the last decades, a plethora of small molecules have been identified which
induce β-cell proliferation like inhibitors of DYRK1A-NFAT, GSK3, and NF-κB sig-
naling pathways, phorbol esters, dihydropyridines (DHP), and thiophene pyrim-
idines, etc. suggesting that these molecules have unique potential in the treat-
ment of diabetes. Studies have shown that inhibiting the activity of the kinase
DYRK1A is a novel method for enhancing the proliferation of human β-cells. In a
high-throughput screening for inducers for MYC expression in HepG2 cells, Wang
et al. found that a small molecule harmine has the potential to inhibit DYRK1A
thus increasing β-cell proliferation. In another study, an aminopyrazine dual in-
hibitor of DYRK1A and GSK3 in beta cells also induces proliferation. The effects of
5-iodotubercidin (5-IT), which was once assumed to cause phenotypic activity by
inhibiting adenosine kinase also act as an inhibitor of DYRK1A. The action of
DYRK1A inhibitors (such as harmine, 5-IT, leucettine-41, and INDY) on human is-
lets can be boosted by TGF inhibitors or GLP-1 agonists like exendin 4. It has also
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been demonstrated that the activity of this family of chemicals involves inhibiting
both DYRK1A and DYRK1B, two closely related isoforms, rather than just DYRK1A
alone. Importantly, these substances have been shown to reverse glucose
dysregulation in a number of mice models of diabetes, including streptozotocin-
induced diabetes and in partial pancreatectomy [73-75].

Beta Cell Transdifferentiation
A differentiated cell can transform into a different type of cell through a process
known as transdifferentiation or lineage reprogramming [76]. It has recently
emerged as one of the promising methods to generate beta cell sources for cell re-
placement therapy for T1DM. Since hepatic, gastrointestinal, and pancreatic non
β-cells originate from similar endodermal progenitor cells, it is possible to
transdifferentiate these cells into β-cells. To achieve transdifferentiation, only a
small portion of the epigenome needs to be altered due to the similarity in devel-
opmental transcription mechanisms, epigenetic landscapes, and distinct arrange-
ment of endogenous cells. Pancreatic non-β-cells, including ductal, acinar, α and
δ-cells share similar epigenetic profiles and developmental histories. MaFa and
pdx1 are the major transcription factors that regulate reprogramming by interact-
ing with other factors during transdifferentiation [77]. The transdifferentiation of
β-cells from α-cells is induced by the deletion of the Aristaless-related homeobox
gene (Arx) or by the overexpression of PAX4, MafA, and Pdx1 through the use of
elastase 2A [78]. In another study, total in vivo ablation of β-cells in mouse models
induces β-cell transdifferentiation not only from α-cells but also from ductal and
acinar cells [79]. Glucagon and glucagons like peptide-1 (GLP-1), GABA, and
artemisinss also induce α-cells to β-cell transdifferentiation [80,81]. Furthermore,
pancreatic δ-cells can also transdifferentiate into insulin-producing cells but only
in juveniles and this ability to adapt has been associated with the forkhead box O1
network [82].

Pancreatic duct cells as a potential candidate for the generation of β-cells have
been proven in many studies. Islet renewal and pancreatic regeneration are ex-
pected to be accomplished by progenitor cells that express Ngn3 near or within
the pancreatic duct. These cells can self-renew and differentiate and also express
cytokeratin (CK)-19 [83,84]. There are studies that proved that, these CK-19-ex-
pressing cells can be differentiated into beta cells with specific growth factor
supplements [85]. Lineage tracing studies also found that during postnatal devel-
opment, new β-cells were budding from a new lobe of the duct. In that experi-
ment, islet cells expressing duct-specific CAII-Cre R26R constitutively indicated
that duct cells expressing CAII had transdifferentiated into acinar cells and new
islets [86]. Furthermore, using GLP-1 and exendin treatment, duct cells can be dif-
ferentiated into β-cells and Expression of MafA, Pdx1, and Ngn3/NeuroD can in-
duce the transdifferentiation of adult murine pancreatic duct cells into β-cells,
whereas inducing Pax6 was also necessary to transform human ductal cells into β-
cells [87,88].

After islet isolation from donors, large populations of acinar cells are dis-
carded; however, it has been proven that these cells can transdifferentiate into β-
cells both in vivo and in vitro with the formation of duct cells as an intermediary
step [89]. Additionally, the Meltons group showed evidence of exocrine cell repro-
gramming to β-cells. Elastase 2A was used as a specific stimulant of acinar cells to
induce the expression of Ngn3, Pdx1, and MafA. The research confirmed the role of
each gene in the transdifferentiation of exocrine cells. They suggested that the ex-
pression of Ngn3 and MafA inhibits acinar cell fate and Ngn3 promotes pancreatic
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endocrine cell differentiation of α, β and δ cells. Additionally, MafA suppresses the
fates of acinar and δ-cells and activates α and β cell fates. Pdx-1 also suppresses δ-
cell differentiation and induces β-cell formation [90]. In another study, in vitro
differentiation of mouse acinar cells was accomplished by treating the cells with
nicotinamide and epidermal growth factor. According to Baeyens et al., Ngn3 ex-
pression is correlated with the JAK/STAT signal pathway during β-cell neogenesis.
They showed that pancreatic acinar cells were transdifferentiated as a result of
constitutive overexpression of mitogen-activated protein kinase and signal trans-
ducer and activator of transcription 3. Lentiviral gene delivery into acinar cells for
7 days resulted in an increase in the expression of specific markers such as insulin
and Pdx1 [91].

Due to the proliferative capacity, the conversion of genetic factors together
with small molecules targeting specific pathways could make the human liver
cells an ideal source of functional insulin-producing cells due to the tissue speci-
ficity, and shared endodermal origin between hepatocytes and pancreatic cells.
Pdx1 has ectopic expression in certain hepatocytes. These hepatocytes were de-
tected close to central veins and exhibit a tendency to transdifferentiate into β-
cells. Maintaining this β-cell plasticity requires the stimulation of the Wnt signal-
ing pathway, ectopic overexpression of Pdx1 and NeuroD1, downregulation of the
hepatic transcription factors HNF1 and HNF4, etc [92]. Intestinal cells have the ca-
pacity to transform into β-cells that produce insulin due to the ectopic expression
of Pdx1, MafA, and Ngn3 in the intestinal crypts. Enterocytes can develop β-like
properties under the control of Pdx1, MafA, and Ngn3, including the ability to con-
vert preproinsulin into its mature form. Functional β-like cells are generated by
knocking off the FoxO1 transcription factor in enteroendocrine cells. In another
study, by the activation of Ngn3 and its downstream genes by GLP-1 administra-
tion increased the synthesis of insulin in developing enterocytes [93,94].

Tissue Engineering Approach for Beta Cell Regeneration
During pancreas organogenesis, tissues from several germ layers release and react
to growth signals. Cells are grown as monolayers in 2D cultures during in vitro
differentiation. As a result, there are no 3D interactions between cell types as they
take place during islet development in vivo. In addition, the islets experience cel-
lular stress due to the degradation of the islet microenvironment and the loss of
the supporting matrix that takes place during isolation, purification, and the pre-
transplant culture period. Islet function and survival are compromised due to the
poor microenvironment and lack of cell-cell contact. Tissue engineering, a process
that combines the concepts of biology, engineering, and materials science to cre-
ate biological substitutes for implantation into the body to either repair, replace,
or restore tissue/organ function, has emerged as a means of overcoming the cur-
rent limitations. The Edmonton technique has many drawbacks that a tissue engi-
neering method has the ability to address, perhaps to increase the lifetime of islet
transplantations. The three main elements of engineered tissues are called the tis-
sue engineering triad: cells, scaffolds, and signaling cues. In tissue engineering,
the idea of scaffolding is to at least partially mimic the functions of native ECM
[95-97].
The pancreatic islets lose all of their attachments to the extracellular matrix dur-
ing the isolation process. The effect of ECM–islet interactions on islet survival and
function has been highlighted in a number of studies. Scaffolds are used in tissue
engineering procedures for islet transplantation as a temporary ECM that pro-
vides the islets with the necessary mechanical support during transplantation. A
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scaffold should be a three-dimensional, porous, and biocompatible matrix with a
controlled rate of tissue creation that results in the degradation of the implanted
material and its substitution by the newly created tissue [98,99]. Scaffolds made
of synthetic, natural, or hybrid materials in islet transplantation have been exten-
sively studied. Some of the synthetic polymers that are most frequently used in is-
let transplantation methods are polylactic acid (PLA), polyglycolic acid (PGA),
polylactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), and poly-
dimethylsiloxane (PDMS), polycaprolactone. With synthetic polymers, the large-
scale fabrication of 3D, biodegradable, and nonimmunogenic structures are with
repeatable mechanical and physical properties. However, the hydrophobic nature
of these materials limits their biocompatibility, and the generation of pro-inflam-
matory acidic byproducts during their decomposition limits their use. For in-
stance, after 15 days, rat islets cultured on a porous poly(glycolic acid) (PGA) scaf-
fold had four times insulin secretion and were two times more viable than those
cultured on 2D tissue culture plates [100]. Combination of these scaffolds and is-
lets with insulinotropic stimuli, such as glucagon-like peptide-1 (GLP-1), exendin-
4 (Ex-4), or insulin-like growth factor-1 (IGF-1), as well as proangiogenic factors
and cells, such as VEGF, platelet-derived growth factor (PDGF), and endothelial
cells (ECs), has shown notable improvements in insulin secretion, islet survival,
and engraftment. Furthermore, bioactive compounds that increase the hydrophi-
licity have been combined with these synthetic scaffolds in order to
“functionalize” them, or increase their biocompatibility. Thus, in preclinical islet
transplantation procedures, synthetic polymers coupled with various biological
materials or with ECM proteins have been used successfully [52,101-104].

Polysaccharides like chitosan, alginate, and hyaluronic acid, and proteins like
gelatin collagen, fibrin, silk, etc. are natural polymers with properties like low tox-
icity, biocompatibility, and enzymatic breakdown which are extensively used in
islet tissue engineering. Furthermore, natural polymers have bioactive moieties
that support the formation of cell-scaffold interactions and improve tissue func-
tionality. There are reports suggesting that in vitro and in vivo islet transplanta-
tion experiments, chitosan has been used as a scaffold, either alone or in combina-
tion with other materials like collagen or gelatin, to protect against the immune
response and to promote islet survival and function. Another polysaccharide that
has occasionally been used successfully in islet transplantation is cellulose [105-
107]. The use of ECM-derived proteins as a scaffold in these methods is an appro-
priate modification considering the effect of ECM on islet survival and function.
Similarly, scaffolds for islet transplantation have been made of polypeptides,
ECM-derived proteins, or polymerizable proteins like fibrin or silk has been re-
ported. Another study from our lab reported a biomaterial scaffold made of two
natural polymers gelatin and dextran dialdehyde showed better islet viability and
insulin secretion than on 2D tissue culture plates [51]. Collagen, the primary struc-
tural proteins of the ECM, is the most abundant protein in mammals. When em-
ployed alone or in combination with growth factors it has increased islet survival
and function both in vitro and in vivo [108]. Fibrin hydrogels are frequently em-
ployed in tissue engineering, and 3D fibrin scaffolds function as a temporary ECM,
supporting long-term islet survival and function. Although fibrin can help with is-
let graft vascularization, it is often combined with proangiogenic growth factors,
especially when islets are implanted in extrahepatic sites [109,110]. Furthermore,
the bioartificial endocrine pancreas has been created using a variety of de-
cellularised organs, including the liver, placenta, lung, and pancreas. Although
biological scaffolds are more biocompatible, repeatability issues must be ad-
dressed in order to prevent batch-to-batch variability [111-114].
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Generation of insulin-producing islet-like clusters (ILCs) on 3D biomaterial
scaffold has been reported in various studies which have better insulin secretion
when compared with insulin producing. The formed islets on the 3D scaffold sys-
tem showed increased viability and insulin secretion than ILCs formed on 2D sur-
faces [51-53,115,116]. Another benefit of using a 3D future system is the co-culture
of different cell types resembling the native pancreatic islets with ECM interaction
and enhanced vasculature. One of our studies showed the advantage of co-cultur-
ing of islet cells with endothelial cells on a 3D scaffold for better islet function
(unpublished data). A biomaterial-based tissue-engineered chamber filled with
growth factor-matrigel has been successful in the generation of the pre-vascular-
ized subcutaneous cavity for islet transplantation [117]. In another study, by in-
ducing the formation of cavities with neovasculature, device-less pre-vasculariza-
tion has also been shown to be effective [118]. VEGF-loaded PLCL capsule was also
effective in the generation of pre-vasularised pouch for islet transplantation [119].

Immunoprotection Through Biomaterial
To achieve successful islet transplantation for T1DM, encapsulation of trans-
planted pancreatic construct in a protective polymeric membrane is necessary to
create a barrier between the transplanted construct and the autoantibodies of the
recipient’s immune system and it serves as an optimal cell encapsulation device
that is biocompatible, non-biodegradable and is stable. It should facilitate the
mass transfer to maintain the viability and functionality of transplanted cells and
also allow the transfer of insulin and glucose to maintain normoglycemia. Apart
from this, it needs to have a well-controlled pore size to exclude the penetration of
immune cells, autoantibodies, and pro-inflammatory cytokines [120,121]. Gener-
ally, encapsulation strategies have been divided into two groups based on the size
of the encapsulating structure: microencapsulation [122-124] and macro encapsu-
lation [125-127]. These broad categories share several considerations, such as
choosing an acceptable tissue donor, preventing graft function loss due to a severe
immune response, and providing proper mass transfer. One of the earliest ex-
amples of islet encapsulation for the treatment of diabetes was the xeno-trans-
plantation of human insulinoma tissue into rats in 1933 using membranous bags
[128]. However, immune-isolated islet transplantation did not become established
until a series of studies in the early 1950s which evaluated the survival rates of
allo-transplanted tissue in an extravascular zone with and without a cell-imper-
meable encapsulating membrane., Though receiving fewer nutrients, these stud-
ies showed that the non-vascularized transplanted tissue survived longer when an
encapsulating membrane was used because it prevented immune cell interaction
and the activation of the direct antigen presentation pathway [129-131].

In 1980, Lim and Sun performed the first experiment on islet encapsulation in
alginate microspheres for β-cell replacement therapy. In an effort to reduce nutri-
ent diffusion distance and graft empty space, conformal islet coatings have since
become a viable alternative to microcapsules. The enhanced surface area to vol-
ume ratio, which is helpful for mass transfer, and ease of implantation of microen-
capsulation are advantages, while total graft removal and monitoring are inherent
disadvantages compared to larger devices [132]. The advantages of macro encap-
sulation over microencapsulation include better graft monitoring and often guar-
anteed complete cellular retrieval upon device removal. On the other hand, it is
more challenging to obtain enough mass transfer and ease of implantation for
these constructions. Over the past few decades, a wide range of islet-encapsulat-
ing devices have been created. These devices comprise cylindrical, planar, and
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hollow-fiber constructions. In recent years, improvements in 3D printing and
microfabrication technology have also aided in the creation of increasingly com-
plex shapes [133].

There have been numerous reports over the years regarding the macro and mi-
croencapsulation devices for islet transplantation with varying degrees of success.
In our studies, we have shown that our fabricated immunoisolation macro-cap-
sules made of PU-PVP IPN [134] could effectively encapsulate Islet-like clusters
(ILC) derived from a variety of tissues [34,35,40-42,115] and reverse the diabetes of
experimentally induced diabetic mice and rats. Further, a study from our lab re-
ported a combinatorial approach of tissue engineering and macro encapsulation
was more successful in the reversal of diabetes and prolonged survival of viable is-
lets for a period of 3 months with avoidance of core necrosis in the implant. In that
study, islet seeded on a biomaterial scaffold encapsulated in a nanoporous
immunoprotection bag made of PU-PVP IPN [134] which was implanted in dia-
betic rats showed a reversal of hyperglycemia [116]. Polymer-based encapsulation
devices such as those made of polycaprolactone (PCL) based nanoporous encap-
sulation were used as long-term immunoprotection devices. However, the small
pores size and biodegradability of PCL make it less efficient for long-term clinical
applications [135]. Similarly, a nanofiber-integrated cell encapsulation device
(NICE device) was reported to prevent cell escape and reported to maintain
normoglycemia over a longer period of time but failed to obtain controlled nano-
pores which are criticalin clinical islet transplantation studies [136]. In another
study, when stem cell-derived beta cell encapsulated in alginate derivative hydro-
gel was implanted in diabetic mice achieved long-term glycemic control but was
also capable of mitigating foreign body reaction [137]. Recently, we developed a
nanoporous immunoisolation membrane via 3D printing using PU-PVP IPN [134]
with controlled pore size. Here, we have adopted a combined approach for the de-
velopment of an immunoprotective pancreatic transplantation device (IPTD) by
generating mesenchymal stem cells (ADMSCs) derived islet-like clusters on a
highly porous scaffold and their subsequent encapsulation in a 3D printed nano-
porous immunoprotection membrane. Diabetic animals transplanted with IPTD
restored normoglycemia within 14 days and maintained its normoglycemic com-
pared to the diabetic control group and the device was also successful in alleviat-
ing FBR (expand). Upon transplantation for sixty days, its nanoporous membrane
prevented the entry of immune cells thus protecting the transplanted cells inside
the device. Here we developed an immunoprotective pancreatic transplantation
device using an easy and scalable fabrication method as a translatable strategy for
the safe delivery of stem cell derived beta cell for T1DM patients (unpublished).

Conclusion
In the last two decades, much progress has been reported in the field of cell-based
treatment for diabetes. The introduction of the Edmonton protocol was the poten-
tial game changer of islet transplantation therapies. Further, lack of sufficient do-
nor islets prompted many researchers with groundbreaking ideas of generating
insulin-producing beta cells from various stem cell and progenitor sources.. Cur-
rently, clinical trials for stem cell-derived islets for T1D are underway with prom-
ising results, further promoting stem cell-derived islets as the future of T1D treat-
ment. Maintaining the viability and functionality of transplanted cells is a major
obstacle in the long run. Other well-recognized problems include hypoxia-in-
duced cell loss and chances of undifferentiated stem cell escape. Innovative strate-
gies like bioengineering and the development of tissue-engineered transplanta-
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tion devices with a porous scaffold that mimics the 3D microenvironment of the
native pancreas and its subsequent encapsulation in a nanoporous immuno-isola-
tion membrane could be effective in addressing these challenging problems.
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